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1    Introduction 

Estimation problems involving non-Gaussian noise have received much attention in recent 
years; see for example Kassam (1988) and Nikias and Shao (1995) and references therein. In 
this paper we consider filtering of Gaussian signals contaminated by independent infinitely 
divisible noise, a class that includes compound Poisson, alpha-stable, and Gaussian noises 
as special cases. As in Nikias and Shao (1995), our intent here is to develop a methodology 
that works in the presence of heavy-tailed, possibly infinite variance, noise. 

A practical application in which the observation noise can be represented as a com- 
bination of a Gaussian noise and a discrete shock is the tracking error in code tracking 
loops, e.g., such as those used in Global Positioning System (GPS) receivers. The tracking 
error, defined as the time offset between the received signal (plus noise) and the internally- 
generated version of the same signal, would be purely Gaussian except that occasionally 
the tracking slips forward or backward by one time step, introducing a discontinuity. 

Another example can be found in many coherent communication systems, where the 
receiver must estimate the phase of a carrier, a process known as phase tracking; see Poor 
(1988), p524. It is customary to model the unknown phase as a Gaussian process, and in 
some applications, it is also appropriate to model the noise and interference as Gaussian. 
When, however, the number of significant interference sources is small and when interferers 
are pulsed or hopped, the noise and interference may be described better by the combination 
of a Wiener process and a jump process. 

Filtering problems involving heavy-tailed noise were initiated by Stuck (1978). He ex- 
amines a classic set-up for Kaiman filtering with i.i.d. plant and observation noises, each 
coming from the same symmetric alpha-stable distribution. A linear recursive filter was 
chosen to satisfy the criterion of minimum dispersion of the prediction error. Cambanis 
and Miller (1981) consider among other linear problems the linear filtering of a signal in 
noise when both signal and noise belong to a special class of processes, e.g., harmonizable. 
Their solution is rather abstract as it is written in terms of integrals with respect to sta- 
ble measures. Nikias and Shao (1995) consider adaptive Wiener-type filters constructed 
according to the minimum dispersion criterion. The closest to our work is the paper by 
Le Breton and Musiela (1993). They derive a linear filter for a continuous time system in 
which both the signal and observation processes are given by linear equations with respect 
to general semimartingale noises and show that their filter minimizes IP error. 

Here we adopt a specific class of noise processes and exploit analytic properties of these 
processes. More specifically, we assume that the signal process X and the observation 
process Y evolve according to the following stochastic differential equations: 

Xt   =   X0 + J a(s)Xsds + I b{s)dBf, (1) 

Yt   =   Y0+ [tc(s)Xsds+ [td(s)dWi+Jt, (2) 
JO Jo 

where B and W are independent standard Brownian motions, and J is a quadratic pure 
jump Levy process, that is, a process with stationary independent increments and with 



quadratic variation that has no continuous part. See Protter (1990) for details; in partic- 
ular, such processes are independent of a Brownian motion. The coefficients a, b, c, d are 
continuous real valued functions of time. We further assume for convenience that X0 and 
Y0 are constants. 

If one is allowed to monitor Y continuously in time, one knows exactly when each jump 
occurs and can extract Yc, the continuous part of the observation: 

Yt
c = Y0+ f c(s)Xsds + /* d(s)dWt. (3) 

Jo Jo 

Thus, to estimate the signal X, one would apply the Kalman-Bucy filter to the Yc extracted 
from the observation. However, a more realistic assumption would be that the observations 
arrive in discrete times 0 < ti < t2 < • • •, because any digital signal processing system can 
only sample at a finite rate limited by the speed of an analog-to-digital (A/D) convertor, 
and can only process observations at a finite rate determined by the available processor 
power. In this case the jump can not be removed and a different filter is required. 

This paper establishes the optimal filter based on observations sampled in discrete times, 
where the optimality refers to minimizing the I? error, that is L2 distance between the signal 
and the filter output. In other words, we find 

Xtj = E[xtj\Ftj] (4) 

where Tt5 = cr(Ytl,..., Ytj} is the sigma field generated by observations obtained up to time 
tj. Since our signal is Gaussian, the integrability assumption is satisfied. Note that we do 
not restrict our filter to be linear. In fact when the noise is strictly non-Gaussian, i.e., jump 
noise J is present, (4) yields a non-linear filter. Although a linear filter is more tractable, 
it could produce a poor estimate in the presence of heavy tailed noise. For example, when 
J is alpha-stable, the observation process has an infinite variance. Thus, any linear filter 
would have an infinite L2 error. 

In the remainder of this introduction, we summarize the results in this paper. For 
simplicity, A denotes an increment of a process; for example, AYtj+1 = Ytj+1 — Ytj. To 
obtain the optimal filter, we solve a two stage filtering problem. In the first stage, we 
compute a pseudo filter X by assuming that we are able to recognize the proportion of 
noise contributed by J. That is, Xtj = ElxAQtA, where Qtj is a pseudo filtration that 
contains the information of (Jtl,..., Jtj) as well as Ttj, i.e., Qtj = a(Jtl,..., Jts) V Ftr 

Noting that {{Xtj, Y£), j = 0,1,...} is jointly normal and is independent of J, we exploit 
the innovation 

which is a sequence of independent normal random variables, to obtain a linear recursive 
equation that defines X: 

Xtj+l = XjM^ + ßjXtj = XjAY^ + njXt, (6) 
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for suitable coefficients Xj, ßj, and rjj. We calculate these coefficients in Propositions 2.1 
and 2.2 of Section 2. 

The second stage consists of filtering the pseudo filter X to the original filtration T. In 
other words, 

Xt] = E[E[xtj\gtj]\Ttj] = E[xtj\ftj] (7) 

which is valid since Qt. contains Ttj. Unfortunately, non-linearity appears in this procedure 
as we mentioned earlier, and knowing Xtj is not enough to update Xtj+l. For this reason, 

we first find the conditional characteristic function i^e^'-H-1^.], which can be updated 
recursively. 

Theorem 1.1. Let (f> be the standard normal density, and let fj+x be the characteristic 

function ofMtj+1 + AJtj+l where Mtj+1 is deüned by (5). Then Hj+1{6) = E[eiB^^ \ftj] 
satisfies the following recursive equation: 

Hj+i(e) //i+i(o;)c-*wAV1Fi(7ia;)dw= (8) 

V§^(AiO-i+10) //i+i(«) e^'we^'S+i'HjfyjU + /%*) dw 

where <rj+1 = Var(Mtj.+1) and jj = \]l(ßj - Vj); ^j,ßj, and Vj are & in (6)- 

The proof of the above theorem is given in Section 3. Since Mtj+1 is a iV(0, <r|+1) random 

variable independent of AJtj+1, one obtains /,-+i(w) as the product of exp(-aJ+1w2/2) and 
the characteristic function of AJtj+1. (See Feller (1971), Vol. 2, for the characterization of 
the infinitely divisible characteristic functions as well as examples.) Differentiating Hj+i(8) 
with respect to 6 and evaluating at 0, one obtains the optimal filter: 

Corollary 1.1. Let Hfa) = Hfau) and H$*(u) = ^#i(0)|Mft._1)a;- 
Then> A+i sat~ 

isßes the following equation: 

Xtj+1 J fj+1(u) e-^-Hff» dw = (9) 

(8) and (9) describe the optimal filter recursively. Unfortunately, evaluating these equa- 
tions may require considerable computation. For each j, one must evaluate Hj at densely 
sampled 6 to update Hj+U and this requires evaluating Fourier integrals as many as the 
sample size of 6. Consequently this method may be impractical when observations arrive 
frequently. Because of these problems, we propose an alternative filter that we obtain by 
approximating Hf and Hf in (9). It can be shown that jj = 0(tj+i - tj) as tj+i - tj -» 0, 
and hence, for small tj+i - tj we may adopt the following approximations: 

tf*(0)~eie7A-        and       Hf (0) ~ iXt.e
ie^^ (10) 



where Xtj is the output at time tj of an approximate filter. Substituting (10) into (9) and 
applying the Fourier inversion, we obtain another filter X that can be obtained from the 
following recursion: 

Xtj+1 = -A,aJ+1|±i(Aytj.+1 - ljXt]) + ßjXtj. (11) 
Jj+i 

It turns out that 

~^+i|j%) = E[Mtj+1\Mtj+1 + AJtj+1 = y] 

is the minimum variance unbiased estimate of Mtj+1 given Mtj+l + A Jtj+1, while AYtj+1 - 
nfjXtj = Mtj+1 + AJtj+1. Thus, it is reasonable to expect that the sub-optimal filter X 
defined by (11) will perform well as long as 7, is small. In Section 4, we use Monte Carlo 
simulation to compare the performance of this sub-optimal filter with that of the linear 
filter proposed in Le Breton and Musiela (1993). The simulation results confirm that X 
performs far better than the linear filter in the presence of sizable jumps. Moreover the 
performance of X is robust to misspecified noise structures. This is an attractive property; 
in practice it is difficult to determine the characteristics of the Gaussian and jump noises. 

2    Computation of coefficients 

In this section, we prove (6) and as a by-product obtain formula for the coefficients that 
appear in (6) and in Theorem 1.1, namely: A, ß, 7,77, and a. Recall that Qtj is the sigma field 
generated by Y£,..., Yt

c as well as Jtl,..., Jtj, and that the innovation M is a martingale 
difference sequence defined by 

with Mt,, = 0. Since J is independent of Yc, E[AY°+1\gtj]= £[A1£+I|AY£,..., AY'], 
and the joint normality implies that Mt.+1 is independent 01 Qt . 

Proposition 2.1. Let A(t) satisfy dA(t) = a(t)A(t)dt with A(0) = 1, and define 

c(s)A(s)ds. (13) 
-j 

Then Mtj+1 = AYt
c

j+i - pj+1PjXtj and Xtj+1 = XjMtj+l + fcXtj where 

Xj = Cov(Mt.+l,Mt.+1 + [
tj+1 c(s)b(s)dBs - f

tj+1 d(s)dWs)/Pj+1 Var (Mt.+1) .      (14) 

In addition, we obtain r)j = ßj — XjPj+±ßj as well as jj = ßjPj+i- 
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Proof. Because dA~l{t) = -a(t)A-l(t)dt and dXt = a(t)X(t)dt + b{t)dBt, integration by 
parts yields 

A~\t)Xt = X0 + f A-l{s)b{s)dBs. (15) 
JO 

In the sequel, Ht := A~l(t)Xt has independent increments. Therefore, 

AYt
c    = /      c(s)A{s)Hsds + /      d(s)dWs 

and jSfi/JöJ = A~l(tj)Xtj whenever s > tj. Prom this, we obtain 

M,+1 = [ti+l c(s)A(s)Hsds + fi+l d(s)dWs - pj+1ßjXtj. (16) 
Jtj Jtj 

On the other hand, integration by parts yields 

ftj+l c(s)A(s)Hsds   =   Htj+1 f
tj+1 c(s)A(s)ds - [^ c(s)b(s)dB(s) 

Jtj Jtj Jtj 

=  Pj+iXtj+1- ft:+1c(s)b(s)dB(s). 
Jtj 

Substituting this into (16), one has 

Xtj+l = — \Mtj+1 + fj+1 c(s)b(s)dBs - [
tj+1 d(s)dWs] + ßjXtj. (17) 

3+      pj+il Jtj Jtj 

Note that the first term in (17) is independent of Gtj while ßjXtj is measurable with respect 
toft,. Thus, 

Xtj+1 = — E\Mtj+1 + f
i+1 c{s)b{s)dBs - f

ti+1 d(s)dWs\Mtj+1] + ßjXtj 3+1     pj+i   L Jtj Jtj 

and the rest follows from the joint normality. 
D 

In the following proposition, we find a recursive expression for (14). 

Proposition 2.2. Let a]+1 = Var(Mtj.+1) and vj+x = E[(Xtj+1 - Xtj+l)
2]. Then 

A    =   gj+i + rj+i (18) 
3 Pj+l<Tj+l 

«j+1  = £
+l (b\s) [mi^- - c(s)}2 + *{*)) ds + <pi+M\ (19) 

where 

rj+i 

vj+1   =   pji fj+1 (c\s)b\s) + d\s)) ds - p£oJ+1(l - p^f (20) 
Jtj 



Proof. Note that 

c(s)A(s)Hsds   =    \ IJ+1 c(s)A(s)Hsds   =    f]+1 c(s)A{s)(Hs - Htj)ds + pj+1ßjXtj 
t j" J tj 

=   (Ht.+1 - Ht.) [
tj+1 c(s)A(s)ds - [tJ+1 c(s)b(s)dBs+Pj+1ßjXtj 

where the last equality is obtained via integration by parts with dHs = b{s)A~1{s)dBs. 
Then (16) can be rewritten as 

Mtj+1 = £+l [Pm^y- ~ c(s)]b(s)dBs + £+1 d(s)dWs+Pj+lßj(Xtj - Xt.).     (21) 

Therefore (19) follows immediately. (21) also implies that 

Cov(Mt.+1, [
tj+1 c(s)b(s)dBs - f

tj+1 d(s)dWs) = rj+l 
Jtj Jtj 

and hence (18) follows. Next, subtracting Xtj+1 = AjMtj+1 - ßjXtj from (17), one has 

Pj+l(Xt.+1 - Xtj+l) = (1 - Pj+1Xj)Mtj+1 + ftj+l c(s)b(s)dBs - f
tJ+1 d(s)dWs. 

Jtj Jtj 

On the other hand, (14) implies that 

Cov(Mti+1, f
i+1 c(s)b(s)dBs - f

h+1 d(s)dWs) = -a]+l(l-pj+1\j). 
J tj J tj 

u 

Therefore 
p2

j+1Vj+l =   I 3+1 (c\s)b2(s) + d2(s)) ds - oJ+1(l - Pj+iXjf 
Jtj 

and we obtain (20). 

3    Proof of Theorem 1.1 

We will prove Theorem 1.1 by evaluating Hj+i(0) = ^[ei*x^+1|j:ii+l] for a fixed but an 
arbitrary j. Both Xtj+1 and AYtj+1 depend on Ttj, and this dependence makes it difficult 
to compute the conditional expectation. In Gaussian cases, one can use an innovation 
process to remove such dependencies. However such methods generally do not exist for non- 
Gaussian noise. Instead, we find another probability measure which makes (AY£+1, A.Jtj+1) 
independent of Qtj (and hence independent of Ttj). Throughout this section, P donotes 
the probability measure associated with our model. The following lemma is parallel to 
Girsanov's theorem: 



Lemma 3.1. Deßne a probability measure Q = Qj+i via 

— - Lij+1 - exp( ^ AYtj+i     2 ^ j . (22) 

Tien tie law of (Mh ,...,Mtj, AFt
c
+1) under Q is the same as the law of (Mh,..., Mtj+1) 

under P. In particular, AYt
c
+i is independent of Qtj. 

Proof. Note that 

^1=eXp(--^Mij+1---^) 
•2        " --J+1 O    -2 

is a positive random variable of mean 1 with respect to P, and hence Q is well defined. Also 
note that, under P, Mtj+1 = Ayt

c
+i - ^jXtj is a N(0, o2

j+l) random variable independent 
oiQt . Therefore 

EP[ei6AY^L^\gtj}^e-^+^ (23) 

almost surely, and the result follows. 
D 

In what follows, EQ denotes the expectation under Q, while Ep, or simply E, is used 
for the expectation under P. We will use the following version of Bayes' rule: 

Hj+1{0)-EQ[l^+l\^+l]=EQ[^x^Ini+l\^ti+l]. (24) 

(See Karatzas and Shreve (1987), pl93.) The next step is to prove the following: 

EQ[ei6ji^Ltj+1 \Tti+1] ■ fj+i(AYtj+1) = (25) 

-i= 0(Vi+10) I fj+l(U) e^^e-^^'Hjfa + ßfl) du,. 

Then EQ[Ltj+11Ftj+1 ]/j+i(A^i+1) can be obtained by evaluating (25) at 6 = 0, and hence 
(25) completes the proof of Theorem 1.1. 

Lemma 3.2. Let Y = W + Z\ where W is a N(0,a2) random variable independent of Z. 
Then 

f(y)-E[e*wexp(^W-~)\Y = y] = ^<l)(Za) jf{w)e^ue*>-*»du,    (26) 

where f is the density of Y, f is the corresponding characteristic function, and <f> is the 
standard normal density. 



Proof.   Note that the Fourier transform of f(y)E\eiiWexp(—W -) \Y = y] is 

[/  T* 1   T*     \  T 

eiwye^w'exp(—W - -—$) J, which further reduces to 

E[eiwZ] .£[ei^)H/exp(4^--^)] = f(co)e^^2 ■ e^+^~>+^2. (27) 

The inverse Fourier transform of (27) is identical to the right side of (26), and the result 
follows. 

D 

Now we resume the proof of Theorem 1.1. Recall that Xtj+1 = XjAYt
c 1 + r]jXt., where 

T]j = ßj — AJTJ. Since Xtj is ^.-measurable, we obtain 

EQ[eie^Ltj+l |Ttj+1 ] = EQ[eie^ EQ(e^AY^Ltj+1 \ Qtj, AYtj+l ) |^.+1 ].    (28) 

Under Q, Al^r is a iV(0,a|+1) random variable independent of AJtj+1 and fj+i is the 
density of AY^+l. Therefore, (26) and (28) yield 

EQ[eie*^Ltj+11gtj, AYtj+1 ] - fj+1(AYtj+1) = (29) 

--L (f>(eXjaj+1) I fj+1(u)) e-^^i+ie-^^^+i'e^^+A«)-««,- dw. 
V27T J 

The last step is to compute the conditional expectation of (29) with respect to «7^ .+1. 
Note that AYtj+l is 7rt>+1-measurable and 

EQ[&-***<#*, | ftj+i]=Ep[j^W)xtj |^_ j = H_^ + ^ _ 

(This last is a consequence of the above lemma.) Therefore the conditional expectation of 
(29) with respect to Ttj+1 yields (25), and the proof is complete. 

4    Numerical Results 

Because the optimal filter X requires excessive computation, we proposed the sub-optimal 
filter X defined in (11). Provided that observations arrive frequently, the performance of 
X is expected to be near by optimal. In this section, we show simulation results in which 
X is compared with the best linear filter obtained by Le Breton and Musiela (1993). We 
also provide simulation results that show how X performs when the correct recognition of 
the noise structure fails. 

In this section, we consider observations that arrive at a fixed rate, or equivalently the 
arrival time of the j-th observation is jö, and the last arrival time is denoted by T. The 
coefficients of the signal process (1) and the observation process (2), namely a, 6, c, and d, 
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are set to be identically 1, and the signal at time 0 is also 1. In this case, it turns out that 

ßj = es, 7j =ßj-l, and 

A,   =   ■^ti+<rTil[ßj-l-2ßj{ßj-l)-1S]i 

vj+l   =   ß](ßj - l)-2(2S - $o*+l), 

while v0 = 0. Thus one updates aj+i, Xj, and vj+i in turns. We take J to be a symmetric 
alpha stable process. Such processes have been used for modeling heavy tailed noise; see, 
e.g., Nikias and Shao (1995). More precisely, the characteristic function of Jt is given by 

E eieJt] = exp(-t(\6\a) 

where a is a stable index and C is a dispersion parameter. Different values of these param- 
eters will be used depending upon the purpose of simulations. 

To implement X one must evaluate a]+lf'j+Jfj+i, but no closed form expression for 

fj+i is available. One can, however, use Fourier inversion, as the Fourier transform ftj of 
/•+1 is well known. In order to reduce round-off errors, we use the standard scale: there is 
an appropriate constant ej+i > 0 such that the law of (Mtj+1 + AJtj+1)/aj+i is the same 
as that of M + ej+iJ where M is standard normal and J is symmetric alpha stable with 
dispersion 1. Consequently, 

2 fj+i/ \   „   j+it y t oj+i-fHy) = Oi+i-H— (—) 
fj+i ftj+i aj+i 

where hj+i is the density of M + ej+\J. The fast Fourier transform is used for evaluating 
hj+i, the inverse Fourier transform of exp(-02/2 - \ej+id\a). 

4.1    Comparison between X and Linear Filter 

The performance of X is compared with that of the best linear filter given by Le Breton 
and Musiela (1993). Three different stable indices (1.0, 1.4, and 1.8) were taken, while 
the dispersion parameter is set to be 1. The inter-arrival time of observations is 0.01 and 
the expiry T = 10. Le Breton and Musiela's filter minimizes U error (for a specified value 
of v > 1) among all linear filters. Thus it is not applicable when the stable index is 1.0. 
p = 1.1 was used in the other cases. 

100,000 Monte Carlo simulations were generated to estimate IP error and L2 error, and 
the results are summarized in Table 1. Our filter is denoted by 'AF' while 'LM' is used for 
Le Breton and Musiela's filter. For comparison, we also implemented the pseudo filter (X) 
using the same simulation, except that the non-Gaussian part of the observation noise was 
omitted. The L2 error in this case is 2.414, and so is not substantially better than that 



of X. (In fact, the L2 error of the psuedo filter sets a lower bound of the_L2 errors of any 
filter.) Since the average value of XT is 20959, the relative L2 error of X is quite small. 
Also X substantially outperforms the best linear filter in both L2 and If errors. As the 
sample variance of alpha stable distribution diverges in the order of n2/a_1 where n denotes 
the sample size, the L2 error of the linear filter is decreasing in a as shown in the table. 

LP error L2 error 

AF LMP AF LMP 

a = 1.0 1.75636 n/a 4.14959 n/a 

a =1.4 1.68752 4.59625 3.86310 180.25826 

a = 1.8 2.11866 4.17176 5.81958 28.17528 

Table 1: Performances of X (AF) and Le Breton-Musiela p = 1.1 (LMP) 

4.2    Robustness 
Ideally, filter design proceeds from complete a priori knowledge of the structure of the ob- 
servation noise. The required parameters can be estimated from the history. It is important 
to check the sensitivity of the filter performance to departure of the assumed value of a 
from the true value. 

AF a = 1.0 AF a = true Kaiman 

a = 1.0 3.09941 3.09941 15903.76435 

a = 1.4 3.21928 3.07577 20.25297 

a = 1.7 3.19790 3.00424 3.02967 

a = 1.8 3.19219 2.99719 2.63541 

Table 2: Robustness of X (AF a = 1.0) 

Data in Table 2 show that X is robust with respect to uncertainty about the value 
of the stable index. In order to obtain a fair comparison, we do not vary the dispersion 
parameter which we set 0.1. Observations arrive each 0.01 time unit and the expiry T = 5. 
As before, 100,000 simulation runs were produced to estimate the L2 error. We focus on the 
performance of Cauchy filter: that is, X was designed for the stable index 1.0. The first 
column shows how this Cauchy filter performs when the actual stable index is different 

10 



from 1.0. Four different values (1.0, 1.4, 1.7, and 1.8) of stable index were considered, 
and the performance was robust to this misspecification. The second column shows the 
performance of X when the stable index a is correctly specified. As shown in the table, 
the degradation due to use of the wrong value of a was not substantial. The last column 
shows the performance of Kaiman filter. The average of X? was 148.4, and the L2 error 
for the pseudo filter was 2.414. Thus we may conclude that the Cauchy filter estimates the 
signal accurately as well. When the stable index is near 2.0, it turns out that the Kaiman 
filter slightly outperforms X. This is due to the small dispersion parameter, as well as large 
stable index, which makes the observation noise virtually Gaussian. 

5    Summary and Remarks 

In order to extract a Gaussian signal contaminated by an infinitely divisible noise, such 
as compound Poisson or alpha stable, we constructed the filter X that minimizes the I? 
error. Since implementing this optimal filter requires excessive computation, we propose 
a more practical filter X that approximates the optimal filter. In fact, if the function 
<jj+ifj+1/fj+i defined in (11) is Lipschitz uniformly as max,- \tj+i —tj\ —> 0, one can show 
that X — X converges to 0 in L2 uniformly on any compact interval. So far, we have not 
been able to check whether a specific model satisfies this assumption. In this paper we 
include simulation results which show that X outperforms the existing best linear filter, 
provided that observations arrive sufficiently frequently. We also show that the performance 
is insensitive to the misspecification of the observation noise distribution. Although the 
robustness of X enables us to obtain an acceptable estimate of the signal even with an 
inaccurate description of the observation noise, a sound statistical procedure for identifying 
the infinitely divisible noise would still be of considerable benefit and should be investigated 
in the future. 

A significant limitation of the results in this paper is that the signal is restricted to be 
Gaussian. In many applications of signal detection, it is inappropriate to describe a signal 
as a Gaussian process. Although it is questionable whether the L2 optimal filter can be 
obtained as a recursive algorithm, a tractable sub-optimal filter may be available and could 
be useful. 
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